We shed light on a pitfall and an opportunity in physics-informed neural networks (PINNs). We prove that a multilayer perceptron (MLP) only with ReLU (Rectified Linear Unit) or ReLU-like Lipschitz activation functions will always lead to a vanished Hessian. Such a network-imposed constraint contradicts any second- or higher-order partial differential equations (PDEs). Therefore, a ReLU-based MLP cannot form a permissible function space for the approximation of their solutions. Inspired by this pitfall, we prove that a linear PDE up to the $n$-th order can be strictly satisfied by an MLP with $C^n$ activation functions when the weights of its output layer lie on a certain hyperplane, as called the out-layer-hyperplane. An MLP equipped with the out-layer-hyperplane becomes "physics-enforced", no longer requiring a loss function for the PDE itself (but only those for the initial and boundary conditions). Such a hyperplane exists not only for MLPs but for any network architecture tailed by a fully-connected hidden layer. To our knowledge, this should be the first PINN architecture that enforces point-wise correctness of a PDE. We give the closed-form expression of the out-layer-hyperplane for second-order linear PDEs and provide an implementation.
translated by 谷歌翻译
在这项工作中,我们介绍了亲和力-VAE:基于其相似性在多维图像数据中自动聚类和对象分类的框架。该方法扩展了$ \ beta $ -vaes的概念,其基于亲和力矩阵驱动的知情相似性损失组件。与标准的$ \ beta $ -VAE相比,该亲和力VAE能够在潜在表示中创建旋转不变的,形态上均匀的簇,并具有改进的群集分离。我们探讨了2D和3D图像数据上潜在空间的潜在分离和连续性的程度,包括模拟的生物电子冷冻术(Cryo-ET)体积,作为科学应用的一个例子。
translated by 谷歌翻译
间质性肺部疾病是一大批以不同程度的肺泡炎和肺纤维化为特征的异质性疾病。准确地诊断这些疾病对于制定治疗计划具有显着的指导价值。尽管以前的工作在分类间隙肺部疾病方面取得了令人印象深刻的结果,但仍有提高这些技术准确性的空间,主要是为了增强自动决策。为了提高分类精度,我们的研究提出了一个基于卷积神经网络的框架,并提供了其他信息。首先,通过在Hounsfield单元中重新缩放原始图像,并添加了ILD图像。其次,修改的CNN模型用于为每个组织产生分类概率的载体。第三,输入图像的位置信息,包括在某些位置在CT扫描中不同疾病的发生频率组成,用于计算位置权重向量。最后,使用两个向量之间的Hadamard产品用于为预测产生决策向量。与最先进的方法相比,使用公开可用的ILD数据库的结果显示了使用不同的其他信息预测这些数据的潜力。
translated by 谷歌翻译